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The variational formula of Skyrme for the moment of inertia is analyzed in some detail. The errors in 
this formula are studied and an upper bound is given. It is found that in the case of the shell model this 
approach is quite accurate and allows use of general Hamiltonians. 

I. INTRODUCTION 

THE general problem of using shell-model tech­
niques for investigating collective properties of 

nuclei is a challenging one whose solution will certainly 
lead to a more fundamental understanding of collective 
nuclear models. In a previous paper1 the emphasis was 
on the connection between the shell model and the 
vibrational model. 

However, there is a broad class of nuclei with 
clearly defined rotational properties for low excitation 
energies whose vibrational levels lie much higher in 
energy. These are the so-called "strongly deformed'' 
nuclei and the natural parameter describing their low 
excited states is the moment of inertia. The question 
considered in this paper is the following: Given a shell-
model single-particle well and two-body interaction, how 
does one go about computing the moment of inertia? 
One solution that comes to mind is to set up some kind 
of Hartree-Fock scheme using the given Hamiltonian 
and then apply the Inglis2 "cranking formula" for the 
evaluation of the moment of inertia. Indeed, Nilsson 
and Prior3 have carried out such a program where in­
stead of a Hartree-Fock calculation they calculated the 
wave functions using a given single-particle deformed 
field plus a pairing force. This approach has been fairly 
successful. However, in characterizing the underlying 
shell-model Hamiltonian only in terms of a pairing part 
and a single-particle deformed well one loses some con­
trol of the problem and any systematic disagreements 
between the theoretical calculations and experiment are 

* The research reported in this document has been sponsored in 
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2 D. Inglis, Phys. Rev. 96, 1059 (1959). 
3 S. G. Nilsson and O. Prior, Kgl. Danske Videnskab. Selskab, 
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hard to study since modifications of the underlying 
interaction are quite difficult to make. On the other 
hand, the degree of validity of the cranking formula 
itself is hard to assess in a real nucleus. In addition, it is 
not clear that the Nilsson and Prior approach will work 
at all well for the light-deformed nuclei where pairing 
theory has not been successfully applied. 

Let us review the possibilities open to us if we wish to 
use a given shell-model Hamiltonian for our calculation. 
First, consider the Hartree-Fock problem. In general, 
this is quite difficult since the orbitals can be varied 
quite arbitrarily. However, if we restrict the possible 
variations so that the orbitals retain axial symmetry and 
are made up of components from a single major shell 
then the resulting calculations are quite feasible. Pos­
sibly one can even go farther and include pairing-type 
degrees of freedom by working with "quasipartides.'' 

The next problem that arises is how to extract the 
moment of inertia from these wave functions and the 
Hamiltonian. Exploratory calculations using the "crank­
ing formula'' in the s-d shell indicated insufficient accu­
racy in cases where one knew beforehand the actual 
eigenvalues of the Hamiltonian. On the other hand, the 
variational formula of Skyrme4 worked out quite well in 
these cases. This was indeed encouraging and led to a 
further analysis of this approach. In this paper the 
problem of finding a variational formula for the moment 
of inertia under our self-imposed shell-model boundary 
conditions is investigated. In addition, the accuracy of 
the final formula is given in terms of an upper bound on 
the error. The final result presented is, indeed, Skyrme's 
formula. 

For even-even nuclei one thus has a fairly accurate 
feasible method for computing deformed wave functions 
and moments of inertia from a given shell-model 

4 T. H. R. Skyrme, Proc. Phys. Soc. (London) A70, 433 (1957). 
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Hamiltonian. In the case of odd-even nuclei somewhat 
more delicate questions of Corioliss mixing and core 
polarization effects occur but they present little extra 
trouble in practice. It is the great advantage of the 
general procedures advocated here that one is working 
with a known Hamiltonian and an explicitly computed 
set of self-consistent wave functions corresponding to 
that Hamiltonian. The influence of an extra particle on 
the underlying core can be easily calculated. These last 
considerations will not be treated in this paper but will 
appear shortly. 

In the following sections the variational calculation of 
moments of inertia is developed from the point of view 
of the "focus parameter" discussed in Sec. II. The 
formal mathematical calculation of this parameter is 
discussed in the following sections and, finally, the 
specialization of the method for use with a Hartree-
Fock representation is touched upon. 

II. THE FOCUS PARAMETER 

An even-even nuclear spectrum with levels of spin 
0, 2,4,6- • • can be characterized by a parameter A = 1/2/ 
where / is the "moment of inertia" of the nucleus when 
the energies Ej are given by the simple formula: 

Ej=AJ(J+l). (1) 

However, in practice, spectra exhibit this behavior only 
approximately and it is necessary to define a "best" 
value of A. One approach is to try to fit the spectrum Ej 
to the form 

Ej=AJ(J+l)+B(J(J+l)y. (2) 

0 0.1 0.2 0.3 0.4 A 

FIG. 2. Focus plot for the nucleus Ne20. 

The coefficient B arises in certain models and describes 
the effect of perturbations on the moment of inertia. 

Another method is to draw a "focus" plot.5 In this 
plot the energies Ej are placed at points on the vertical 
axis which is calibrated in energy units. Then a line is 
drawn through each point Ej with a slope / ( / + 1 ) . The 
horizontal axis is also calibrated in energy units. 

An example for the case of a spectrum of the exact 
form (1) is shown in Fig. 1. For a realistic case we show 
the same plot in Fig. 2 for Ne20. The focus of the lines 
which was at A =0.2 in Fig. 1 is now blurred. However, 
the eye finds a best focus around ^4~0.2. Mathemati­
cally, the focus might be found from the least-square 
condition derived by minimizing the function 

F(A) = -£{EJ-EO-AJ(J+1)}\ 
J 

(3) 

or more generally a function 

G(A) = ZNJ{EJ-E0-AJ(J+1)}*, (4) 
J 

where ]T) NJ~ 1, and Nj is a set of weighting factors 
chosen because either the experiment or the theory is 
more or less dependable for certain values of / . In the 
following sections a variational method will be derived 
for evaluating the best A defined by minimizing G(A) in 
Eq. (4) when one is given a Hamiltonian and a set of 
variational wave functions. In addition, an upper bound 
on the width of the focus is given. This method is quite 
convenient for evaluating moments of inertia in terms 
of a shell-model Hamiltonian and independent-particle 
wave functions. 

FIG. 1. Idealized focus plot for a spectrum of the form 
£ / = 0 . 2 / ( / + l ) . 6 This plot was suggested to the author by H. J. Lipkin. 
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III. ACCURACY OF EIGENVALUE APPROXIMATION 

We review a well-known theorem6 which gives the 
accuracy of the approximation 

E~{$\H\$), (5) 

where $ is a trial wave function and H is the Hamil-
tonian. Let ($|<i>)=l and define the eigenfunctions \f/t 

and eigenvalues Ei of H: 

Hft^Etfi; (6) 
also define 

Pi^lQnm*, (7) 
thus, 

£ P < = 1 . (8) 
Then 

{9\H\9) = j:PiEi^S, (9) 
i 

next 

(zKH-EYity^ZPiiEi-Ey. (io) 
i 

Since P * ^ 0 , (Ei—E)2^0, if we replace the factors 
(Ei-E)2 in Eq. (10) by their smallest value (Ek-E)2 

we conclude, using Eq. (8), that 

{*\(H-M)*\$)Z(Ek-Mp, (11) 

where Ek is the eigenvalue of H closest to E. If we define 

7»=<*|(ff-jg)*|*>, (12) 

then Eq. (11) can be rewritten as 

E-I^Ek^E+I, (13) 

which shows that there is at least one eigenvalue of H 
within an energy interval / of E. 

If we define % by 

m=($\H\$)$+x, (14) 
then we see that 

<*lx>=0 (x\x)=l2; (15) 
so the length of the "correction" part x is an upper limit 
on the error when one approximates E by ($\H\§). As 
one minimizes (x | x) one is trapping an eigenvalue of H 
inside a definite interval given by (x|x)- This leads to 
just the sort of variational principle needed to find the 
best A of the previous section. 

IV. THE FOCUS THEOREM 

We are given a Hamiltonian H and a trial wave-
function 3>. H is spherically symmetric. <£ is, in general, 
not an eigenstate of angular momentum. In later appli­
cations it will take the form of a determinant of inde-

* The author wishes to thank Professor L. Wilets for pointing 
out to him the existence of this theorem. 

pendent-particle wave functions corresponding to a 
deformed-field potential. We now consider a new 
Hamiltonian. 

3(A) = H-AJ2, (16) 

where J2 is the square of the angular momentum opera­
tor and A is regarded as a parameter. The eigenvalue 
spectrum of the Hamiltonian H(A) is Ej(A). These are 
plotted as a function of A on a "focus" plot, (c.f. Figs. 1 
and 2) where one starts at A = 0 with the eigenvalues of 
H. We seek that value A such that the focus is sharpest. 
If the focus came to a point as in Fig. 1 then the eigen­
value spectrum of H would be of the form of Eq. (1) 
with A equal to that value atj:he focus, (i.e., -4 = 0.2). 
Physically we would regard H(0.2) as the "intrinsic" 
Hamiltonian and 0.2J2 as the rotational part of the 
Hamiltonian. 

We next apply the theorem of the previous section. 
Defining the correction wave function x(A) by 

3(A)$=(<Z>\H(A)\<f>)<f>+x(A), (17) 
and 

(x\x) = P(A), (18) 

we can conclude that an eigenvalue of H lies within an 
energy interval 1(A) of ($\H\$). We need information 
about eigenvalues of specific / , however, and for this 
purpose we introduce projection operators PJ which 
project on the subspace with given angular momentum 
/ . Applying PJ to Eq. (7) and noting that the com­
mutator 

[H,Pn = 0, (19) 

because H is spherically symmetric, we find 

fi$j=($\£\$yi>j+Xj, (20) 

where 
pj^=^Jj pjx=Xj. 

Applying $ j on the left of Eq. (20) 

<$/|^|^> = <^|^|*X^I^>+<^lx/>. (21) 
Writing Eq. (20) in the form of Eq. (14) and Eq. (15): 

H$j=\{$\H\$)+ \*J+XJ $ , , (22) 
I (*J\$J)\ ($j\<i>j) 

where we see from Eq. (21) that the factor in brackets 
is simply ($j \ H \ $ / ) / ( $ J | $ J ) , and the "correction" 
term Xj— ({$J\XJ)/($J\$J))$J is orthogonal to <£>j. In 
order to apply our theorem we need to use a normalized 
$j. To this purpose we introduce the normalization 
constants 

NJ=(*J\*J), (23) 

and write 

$JN= . (24) 
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Finally Eq. (22) can be divided by N/12 to give 

foj"=\(*\&\<!>)- <*/|X/> 

Nj 
$., 

XJ {$J I XJ) 

N/1* Nj 
4>jN, (25) 

where the factor in brackets is simply ($jN j 11 | $jN). 

($J I XJ) 
e,=<*,w|#|*,"> = <*l#l*>+ ! . (26) 

Nj 

The error interval corresponding to this approximation 
for the energy Ej is Ij where / / is given by 

• < 

XJ {$J | XJ) 

\Nj^ Nj 

XJ ($J\XJ) 
-^J1 

> AV / 2 Nj 

(XJ\XJ) |<*J- |XJ->|2 

NJ NJ* 
(27) 

and by the theorem of Sec. I l l 

\Ej(A)-ej\^Ij, (28) 

where Ej(A) are eigenvalues of H(A) with angular 
momentum J. 

From Eqs. (26) and (27) we derive a remarkable 
equality, namely, 

Z{(ej-($\H\3>)¥+If}Nj=P(A), (29) 

where 

because 

^)=E<x.Wx/>=<xlx>, (30) 

JLJPJ=I. 

From Eq. (28) we conclude that 

Y,{(tJ-($\3\*))2+(Ej(A)-ejy}Nj^P(A). (31) 

Using the relation 

4(y-»K(y-*)H-(*-*)*, 
we finally conclude 

(32) 

T,(Ej(A)-(*\fi\*))*N,$2P(A), (33) 
j 

writing 
EJ(A) = EJ-AJ(J+1), (34) 

where Ej=Ej(0) are eigenvalues of H. We have 

Z,(EJ-AJ(J+1)-(*\8(A)\*))>NJ$2P(A). (35) 
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FIG. 3. Plot of P(A) = (X(A) \X(A)) for the case of Ne20. 

The left side of (35) has the same form as Eq. (4). We 
see that the weighting factor Nj is a measure of how 
much of the state PJ$ is contained in <£. This is fortu­
nate since <£> will be determined variationally and the 
dominate P J$ of $ will be best represented. Returning 
to Eq. (33) we see that the focus condition can be 
replaced by the condition that P (A) be minimized. Our 
new problem then is to find a <£ and an A such that 
(% | x) is a minimum where these quantities are related 
by the equation 

(H-AJ2)$=($>\H-AJ2\$)$+x- (36) 

Physically, we are subtracting rotational energy 
AJ(J+1) from the original Ej so that the differences 
Ej—AJ(J+l) are as independent of / as possible and 
cluster about the value ($\H(A)\$), which may be 
interpreted as the intrinsic energy of the system. In 
practice, this procedure is carried out in two steps. First 
we minimize ($\H—AP\$) for fixed A and varying <£. 
If <J> is cast in the form of a determinant of independent-
particle orbitals we have a Hartree-Fock type problem. 
Designate the best <£ obtained this way by $A and the 
corresponding x by XA. Next we minimize (XA\ XA) as a 
function of A. We finally arrive at a best value of A and 
an upper limit, 2(XA\xA) for the focus defined as the 
left side of Eq. (33). The particular advantage of this 
procedure is that the evaluation of 

(XA | XA) = ($A \(II-^A\H\ $A))21 <^> 

=L(^|i?-(^|^|^)k) 
\n) 

X(n\6-(*A\6\*n)\*A) (37) 

only involves intermediate states n corresponding to 2-
particle excitations. The contribution for \n)=$A is 
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obviously zero and for a single-particle excitation we 
know that (<&A\H\n) = 0 because $A is the Hartree-
Fock solution for H. Finally, we only need evaluate 

(XAIXA) = £ |($A\H-AV\II)\\ (38) 
I") 

where | II) are the set of 2-particle excitations. 
Detailed calculations using this approach will be re­

ported on shortly. As an example, however, we show in 
Fig. 3 the plot of P(A)= (X(A)\X(A)) for the case 
again of Ne20. An Elliott-Flower's7 type shell-model 
Hamiltonian was used and only the orbitals outside the 
O16 core were varied. The value A at which the mini­
mum occurs does indeed coincide with the focus of 
Fig. 2. The value of P (A) at the minimum is ~ 12 MeV. 
So 2 J ~ 7 MeV. The focus width in the physical situation 
is ^ 2 MeV. Hence, our theoretical upper limit is quite 
a bit larger than the observed width in this case. 

7 J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London) 
A229, 536 (1955). 

V. CONCLUSIONS 

If one sets out on the program of computing collec­
tive properties with a given shell-model Hamiltonian 
then the moment of inertia formula of Skyrme is a 
convenient and accurate tool. The error committed in 
using this formula has an upper bound which is easily 
ascertained without performing any extra calculations. 
The natural parameter that arises in this method is a 
"focus" point which can be simply extracted from the 
physical data. 
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